Pagina principală

De la Wikipedia, enciclopedia liberă
Versiunea pentru tipărire nu mai este suportată și poate avea erori de randare. Vă rugăm să vă actualizați bookmarkurile browserului și să folosiți funcția implicită de tipărire a browserului.
Articole de calitate
Conținut recomandat

În analiza matematică, seria infinită 1 - 2 + 3 - 4 + … este o serie alternată ai cărei termeni sunt numerele întregi pozitive succesive. Folosind notația însumării, suma parțială a primilor m termeni ai seriei poate fi exprimată ca:

Seria infinită diverge, adică șirul său de sume parțiale, (1, −1, 2, −2, …), nu tinde înspre o limită finită. Astfel de serii nu au sumă în sensul uzual al noțiunii de ”sumă” a seriei, lucru clarificat încă din 1755 de Leonhard Euler, în Institutiones Calculi Differentialis. Euler avea să enunțe, în același secol al XVIII-lea, ceea ce în opinia lui era o egalitate paradoxală:

În fapt, Euler mai notează și alte egalități ”dincolo de puterea de înțelegere” :

Înainte de Cauchy, în locul întrebării ”Cum să definim 1 - 1 + 1 - 1 + 1... ?”, întrebarea firească folosită era ”Ce este o sumă precum 1 - 1 + 1 - 1 + 1... ?” ceea a condus, alături de o anumită perplexitate a minții, către discuții deseori foarte aprinse.

Către sfârșitul secolului al XIX-lea, metodele de sumare ale seriilor divergente au început să fie studiate sistematic, constituind o nouă ramură a matematicii. Începând cu 1890, Ernesto Cesàro, Émile Borel și alții au investigat metode clar definite de a atribui o „sumă generalizată” unor serii divergente. Astfel pot fi menționate transformarea liniară sau metodele Cesàro, Abel, Borel, Euler, Norlund, Riesz sau Riemann. Multe dintre aceste metode de sumare vor aloca pentru 1 − 2 + 3 − 4 + … valoarea de 14. Sumarea lui Cesàro este unul dintre procedeele care nu furnizează nicio valoare.

Seria 1 − 2 + 3 − 4 + … este strâns legată de seria lui Grandi, 1 − 1 + 1 − 1 + …. Euler le-a tratat pe acestea ca fiind cazuri particulare ale seriei 1 − 2n + 3n − 4n + … pentru n arbitrar, o direcție de cercetare care extinde activitatea sa asupra problemei Basel spre ecuațiile funcționale a ceea ce este cunoscut în prezent ca funcția eta Dirichlet și funcția zeta Riemann.

Știați că?
Știați că?
Știri
Știri
Ziua de astăzi în istorie
Ziua de astăzi în istorie
27 aprilie:
Ferdinand Magellan

Alte aniversări: 26 aprilie27 aprilie28 aprilie

Comunitate
Comunitate

Sunteți pentru prima dată la Wikipedia? Începeți de aici.